complexes (where $n=0-4$) containing a bonded tetra-hedral-like $\mathrm{X}_{n} \mathrm{M}_{4-n}$ cluster fragment are as follows: (1) X_{4} molecules of T_{d} symmetry, e.g., white P_{4} and yellow As_{4}; (2) $\mathrm{X}_{3} \mathrm{M}(\mathrm{CO})_{3}$ molecules of $\mathrm{C}_{3 \mathrm{v}}$ symmetry, none known before $\mathrm{As}_{3} \mathrm{Co}(\mathrm{CO})_{3} ;{ }^{14}$ (3) $\mathrm{X}_{2} \mathrm{M}_{2}(\mathrm{CO})_{6}$ molecules of $\mathrm{C}_{2 \mathrm{v}}$ symmetry, e.g., $\mathrm{S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}{ }^{15}$ and $\mathrm{As}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{6} ;{ }^{3,4}(4) \mathrm{XM}_{3}(\mathrm{CO})_{9}$ molecules of localized $\mathrm{C}_{3 \mathrm{v}}$ symmetry, e.g., $\mathrm{SCo}_{3}(\mathrm{CO})_{9},{ }^{7} \quad \mathrm{SeCo}_{3}(\mathrm{CO})_{9},{ }^{9}$ and $\mathrm{RCCo}_{3}(\mathrm{CO})_{9}$ (where R represents $\mathrm{CH}_{3},{ }^{16} \mathrm{C}(\mathrm{O}) \mathrm{CCo}_{3}-$ $(\mathrm{CO})_{9},{ }^{17} \mathrm{OBH}_{2} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3},{ }^{18} \mathrm{C}_{2} \mathrm{HCO}_{2}(\mathrm{CO})_{6},{ }^{19}$ and $\mathrm{C}_{3} \mathrm{Co}_{3}-$ $\left.(\mathrm{CO})_{9}{ }^{19}\right)$; (5) $\mathrm{M}_{4}(\mathrm{CO})_{12}$ molecules of T_{d} symmetry, e.g., $\mathrm{Ir}_{4}(\mathrm{CO})_{12}{ }^{2}{ }^{20-23}$

Further characterization of $\mathrm{As}_{3} \mathrm{Co}(\mathrm{CO})_{3}$ by chemical and physical means (including redox reactions) is in progress to assess the chemical versatility of this complex.

Acknowledgments. We acknowledge with gratitude the financial support of this work by the National Science Foundation (GP-4919). The use of the UNIVAC 1108 and CDC 3600 computers at the University of Wisconsin Computing Center was made available through partial support from NSF and WARF through the University Research Committee. One of us, M. S. F., is pleased to acknowledge NSF (Grant GY-4404) for a summer undergraduate NSF Trainee Fellowship.
(14) Preliminary experiments indicate the existence of the presumably analogous $\mathrm{Sb}_{3} \mathrm{Co}(\mathrm{CO})_{3}$ complex.
(15) C. H. Wei and L. F. Dah1, Inorg. Chem., 4, 1 (1965).
(16) P. W. Sutton and L. F. Dahl, J. Am. Chem. Soc., 89, 261 (1967).
(17) G. Allegra, E. M. Peronaci, and R. Ercoli, Chem. Commun., 549 (1966).
(18) F. Klanberg, W. B. Askew, and L. J. Guggenberger, Inorg. Chem., 7, 2265 (1968).
(19) B. R. Penfold, R. J. Dellaca, and W. T. Robinson, Abstracts of Papers, National Meeting of the American Crystallographic Association, Seattle, Wash., March 1969.
(20) G. R. Wilkes and L. F. Dahl, submitted for publication.
(21) The molecular geometry of both $\mathrm{Co}_{4}(\mathrm{CO})_{12}{ }^{22}$ and $\mathrm{Rh}_{4}(\mathrm{CO})_{12}{ }^{23}$ differs from that of $\operatorname{Ir}_{4}(\mathrm{CO})_{n}$ in possessing three bridging carbonyl groups such as to give $\mathrm{C}_{3 \mathrm{v}}$ symmetry.
(22) C. H. Wei and L. F. Dahl, J. Am. Chem. Soc., 88, 1821 (1966).
(23) C. H. Wei, G. R. Wilkes, and L. F. Dahl, ibid., 89, 4792 (1967).

Alan S. Foust, Michael S. Foster, Lawrence F. Dahl
Department of Chemistry, University of Wisconsin
Madison, Wisconsin 53706
Received April 14, 1969

Organometallic Pnicogen Complexes. IV. Synthesis, Structure, and Bonding of New Organometallic Arsenic-Metal Atom Clusters Containing a Metal-Bridged Multiply Bonded $\mathbf{A s}_{2}$ Ligand: $\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{As}_{2}$ and $\mathrm{Co}_{2}\left\{(\mathrm{CO})_{5} \mathbf{P}\left(\mathrm{C}_{6} \mathbf{H}_{5}\right)_{3}\right\} \mathrm{As}_{2}{ }^{1,2}$
Sir:
Despite intensive research activity concerning (transition metal) $-\mathrm{N}_{2}$ complexes, ${ }^{3}$ there have been no previously known examples of (transition metal)- X_{2} complexes for the other group V a family elements $(X=P$, $\mathrm{As}, \mathrm{Sb}, \mathrm{Bi}$) even though vapor pressure and spectroscopic studies ${ }^{4}$ demonstrate the existence at high temper-

[^0]atures of diatomic X_{2} molecules for these congener elements in the gaseous state. This paper reports the preparation and structural characterization of two dicobaltAs_{2} complexes, $\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{As}_{2}$ and a derivative $\mathrm{Co}_{2}{ }^{-}$ $\left\{(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\} \mathrm{As}_{2}$, which display tetrahedral $\mathrm{M}_{2} \mathrm{X}_{2}$ geometry rather than the linear $\mathrm{M}-\mathrm{X}-\mathrm{X}-\mathrm{M}$ geometry recently established from Raman spectral studies ${ }^{5}$ for the diruthenium $-\mathrm{N}_{2}$ fragment in the bridging nitrogen $\left\{\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right]_{2} \mathrm{~N}_{2}\right\}^{4+}$ cation. ${ }^{5,6}$ The molecular compound $\mathrm{Co}_{2}\left\{(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\} \mathrm{As}_{2}$ has been found from an X-ray crystallographic analysis to contain the shortest known As-As bond length reported to date; the exceptionally short As-As distance has been interpreted from MO considerations in terms of a high degree of As-As multiple-bond character being present in the tetrahedral $\mathrm{Co}_{2} \mathrm{As}_{2}$ system.
$\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{As}_{2}$ is a red liquid (mp $\sim-10^{\circ}$) produced by the reaction of $\mathrm{Co}_{2}(\mathrm{CO})_{3}$ with excess AsCl_{3} in THF and purified by chromatography on silica gel. Its mass spectrum shows the presence of all the possible $\mathrm{As}_{2} \mathrm{Co}_{2^{-}}$ (CO) $)_{n}{ }^{+}$ions ($n=0-6$) with the most prominent species being the parent ion and the bare $\mathrm{As}_{2} \mathrm{Co}_{2}{ }^{+}$cluster. The molecular architecture of $\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{As}_{2}$ was established from an X-ray crystallographic analysis of the monosubstituted triphenylphosphine derivative, $\mathrm{Co}_{2}\left\{(\mathrm{CO})_{5} \mathrm{P}\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\} \mathrm{As}_{2}$ (vide infra), which showed that the unsubstituted $\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{As}_{2}$ molecule must be structurally analogous to the electronically equivalent $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{X}_{2}$ molecules ($\mathrm{X}=\mathrm{S}, \mathrm{Se}$). ${ }^{7} \quad$ The molecular configuration of $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~S}_{2}$ (Figure 1) ${ }^{8}$ ideally possesses $\mathrm{C}_{2 \mathrm{v}}-2 \mathrm{~mm}$ symmetry in the solid state; dipole moment and infrared spectral analysis ${ }^{9}$ show its over-all molecular geometry to remain unchanged on dissolution. The close similarity of the infrared solution spectrum ${ }^{10}$ of $\mathrm{Co}_{2}{ }^{-}$ $(\mathrm{CO})_{6} \mathrm{As}_{2}$ with that of $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~S}_{2}$ allows the gross $\mathrm{Co}_{2}{ }^{-}$ $(\mathrm{CO})_{6} \mathrm{As}_{2}$ geometry to be assigned with certainty as the $\mathrm{C}_{2 v} \mathrm{Fe}(\mathrm{CO})_{6} \mathrm{~S}_{2}$-type structure.

In order to obtain a solid derivative $\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{As}_{2}$ suitable for X -ray examination, $\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{As}_{2}$ was refluxed in benzene with excess triphenylphosphine which afforded red $\mathrm{Co}_{2}\left\{(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\} \mathrm{As}_{2}$. This latter compound crystallizes in the triclinic system with two molecules in a unit cell of symmetry P1 and of dimensions a $=11.391 \pm 0.008 \AA, b=13.033 \pm 0.009 \AA, c=9.120$ $\pm 0.007 \AA, \alpha=108.17 \pm 0.02^{\circ}, \beta=103.84 \pm 0.01^{\circ}$, $\gamma=74.22 \pm 0.02^{\circ} ; \rho_{\text {calcd }}=2.02 \mathrm{~g} \mathrm{~cm}^{-3}$ vs. $\rho_{\text {obsd }}=1.97$ $\pm 0.06 \mathrm{~g} \mathrm{~cm}^{-3}$ (flotation method). Three-dimensional intensity data were collected with Mo $\mathrm{K} \alpha$ radiation on a General Electric four-angle automated diffractometer.

[^1]

Figure 1. The geometries of (a) the $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~S}_{2}$ molecule and (b) the $\mathrm{CO}_{2}\left\{(\mathrm{CO})_{5} \mathrm{P}\right\} \mathrm{As}_{2}$ fragment of the $\mathrm{Co}_{2}\left\{(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\} \mathrm{As}_{2}$ molecule (i.e.. for clarity the three phosphorus-attached phenyl groups were omitted). The $\mathrm{Co}_{2}\left\{(\mathrm{CO})_{i} \mathrm{P}\right\} \mathrm{As}_{2}$ fragment ideally possesses $\mathrm{C}_{s}-\mathrm{m}$ symmetry, while $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathbf{S}_{2}$ approximately conforms to $\mathrm{C}_{2 \mathrm{p}}-2 \mathrm{~mm}$ symmetry. The over-all molecular configuration of the unsubstituted $\mathrm{Co}_{2}(\mathrm{CO})_{8} \mathrm{As}_{2}$ molecule is shown (see text) to be analogous to that of the $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathbf{S}_{2}$ molecule.

The structure was determined from Patterson and Fourier maps and refined by full-matrix least squares to a conventional R value of 7.2% based on 1911 independent observations with $F_{0}{ }^{\prime}>4 \sigma\left(F_{0}\right)$.

Figure 1 compares the important bond lengths and angles of the $\mathrm{Co}_{2}\left\{(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\} \mathrm{As}_{2}$ and $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~S}_{2}$ molecules. These two molecules and $\mathrm{As}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{6}$ are structurally and electronically related to the acetylenebridged $\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ molecule. ${ }^{11-13}$ The $\mathrm{As}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{6}$ molecule also is homologously related to the electronically equivalent As_{4} and $\mathrm{As}_{3} \mathrm{Co}(\mathrm{CO})_{3}$ molecules ${ }^{1}$ as a dimetal derivative of As_{4} in which two arsenic atoms have been replaced by two $\mathrm{Co}(\mathrm{CO})_{3}$ groups.

A prime stereochemical feature is that the As-As bond length of only 2.273 (3) \AA in the triphenylphosphine derivative of $\mathrm{As}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{6}$ is $0.10 \AA$ less than that of $2.372(5) \AA$ in $\mathrm{As}_{3} \mathrm{Co}(\mathrm{CO})_{3}{ }^{1}$ which in turn is $0.06-0.09$ \AA less than the average bond lengths found in gaseous $\mathrm{As}_{4}(2.44 \AA){ }_{\dot{⿺}}{ }^{14}\left[\mathrm{AsCH}_{3}\right]_{5}(2.428(8) \AA),{ }^{15}$ and $\left[\mathrm{AsC}_{6} \mathrm{H}_{5}\right]_{6}$ (2.456 (5) \AA). ${ }^{16}$ This significant As-As bond-shortening trend on substitution of $\mathrm{Co}(\mathrm{CO})_{3}$ groups in place of arsenic atoms in $\mathrm{As}_{\text {m }}$ may be rationalized from the premise that the more electronegative $\mathrm{Co}(\mathrm{CO})_{3}$ system effectively functions as an "electron sink" which by a resultant partial charge transfer from the arsenic to the $\mathrm{Co}(\mathrm{CO})_{3}$ system decreases the antibonding orbital character between the arsenic atoms. A delocalized MO model incorporating this viewpoint was utilized ${ }^{1}$ to explain the exceptional stability of the $\mathrm{As}_{3} \mathrm{Co}(\mathrm{CO})_{3}$ molecule relative to the As_{1} molecule. A $\sigma-\pi$ MO formulation similar to the one employed by Brown ${ }^{13}$ to describe the dimetal-acetylene interaction in $\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right.$ $\mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$) has been invoked in the bonding representations of $\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{As}_{2}$ and the triphenylphosphine analog in order to account conveniently for the large As-As

[^2]multiple-bond character in accord with the extremely short As-As boind length in $\mathrm{Co}_{2}\left\{(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\} \mathrm{As}_{2}$. The same symmetry classification of orbitals utilized by Brown ${ }^{13}$ in $\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)^{17-20}$ is applicable except that one instead must consider the relative importance of the $3 \mathrm{~d}, 4 \mathrm{~s}, 4 \mathrm{p}$, and 4 d valence atomic orbitals of the arsenic atoms to the symmetry-allowed $\mathrm{Co}-\mathrm{As}_{2}-\mathrm{Co}$ molecular orbitals.

A prominent stereochemical difference between $\mathrm{CO}_{2}-$ $\left\{(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\} \mathrm{As}_{2}$ and $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~S}_{2}$ which clearly accents an important bonding trend in these $\mathrm{M}_{2}(\mathrm{CO})_{6} \mathrm{X}_{2}$ molecules is revealed from a comparison of the $\mathbf{X}-\mathbf{X}$ bond lengths in these two molecules. The As-As bond length in $\mathrm{Co}_{2}\left\{(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\} \mathrm{As}_{2}$ is $0.16-0.18 \AA$ shorter than As-As single-bond lengths, whereas the $\mathrm{S}-\mathrm{S}$ bond length of $2.007(5) \AA$ in $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~S}_{2}$ is close to the $\mathrm{S}-\mathrm{S}$ bond lengths of range $2.01-2.10 \AA$ found ${ }^{21-26}$ in a large number of disulfide compounds. This bond-length evidence for a considerably greater π-bond order in the As-As bond of $\mathrm{Co}_{2}\left\{(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\} \mathrm{As}_{2}$ compared to that in the $\mathrm{S}-\mathrm{S}$ bond of $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~S}_{2}$ indicates that the two antibonding π^{*} orbitals of the As_{2} fragment in the $\mathrm{Co}_{2} \mathrm{As}_{2}$ complex are populated with significantly less charge than the corresponding π^{*} orbitals of the S_{2} fragment in the $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ complex. This is not unexpected in that As_{2} as a neutral free entity (like acetylene) would possess a triple bond while neutral S_{2} (like O_{2}) is considered to have a double bond. Unlike disulfide systems ${ }^{26}$ no (bond length)-(valence-bond order) curve exists for the As-As systems. Nevertheless, based on the bridging acetylene $\mathrm{C}-\mathrm{C}$ bond length of $1.37 \AA^{13}$ in $\mathrm{Co}_{2}-$ $(\mathrm{CO})_{6}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ being near the normal $\mathrm{C}-\mathrm{C}$ doublebond length value of $1.33 \AA$ and the single-to-double bond length range being 1.9-2.1 \AA for the $\mathrm{S}-\mathrm{S}$ systems, ${ }^{26}$ it is presumed that the As-As distance in $\mathrm{Co}_{2}\left\{(\mathrm{CO})_{5} \mathrm{P}-\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\} \mathrm{As}_{2}$ roughly corresponds to a double-bond length. This indicates that there is an appreciable for-
(17) In $\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ the cis-bent metal-coordinated geometry of diphenylacetylene subsequently has been explained by Mason and coworkers ${ }^{18,19}$ in terms of the electron density distribution in the metal-acetylene system approximating that in an appropriate excited state of free acetylene. On the other hand, Blizzard and Santry ${ }^{18}$ point out that the resulting cis-bent acetylene structure on metal complexation can be rationalized solely on the basis of symmetry-allowed groundstate metal-ligand molecular orbital interactions which include small but significant contributions from the acetylene carbon $2 s$ atomic orbitals.
(18) H. C. Blizzard and D. P. Santry, J. Am. Chem. Soc., 90, 5749 (1968).
(19) R. Mason, Nature, 217, 543 (1968).
(20) R. McWeeny, R. Mason, and A. D. C. Towl, Discussions Faraday Soc., in press.
(21) J. Donohue, A. Caron, and E. Goldish, J. Am. Chem. Soc., 83, 3748 (1961), and references cited therein.
(22) D. E. Sands, ibid., 87, 1396 (1965).
(23) V. A. Uchtman and L. F. Dahl, ibid., 91, 3756 (1969).
(24) D. L. Stevenson, V. R. Magnuson, and L. F. Dahi, ibid., 89, 3727 (1967).
(25) A. Hordvik, Acta Chem. Scand., 20, 1885 (1966), and references cited therein; see also S. C. Abrahams, Quart. Rev. (London), 10, 407 (1956).
(26) From a literature survey Hordvik ${ }^{25}$ has shown that sulfur-sulfur bond lengths between divalent sulfur atoms vary with the dihedral (i.e., torsional) angle such that the smallest $\mathbf{S}-\mathbf{S}$ bond lengths (near $2.00 \AA$) correspond to large dihedral angles close to 90° and the larger $\mathrm{S}-\mathrm{S}$ bond lengths (near $2.10 \AA$) correspond to small dihedral angles. From this (bond-length)-(dihedral-angle) variation, which is attributed both to considerably smaller lone-pair electron repulsion and to more efficient π-bonding involving p-d orbital overlap as the dihedral angle is decreased toward 0°, Hordvik ${ }^{25}$ proposed a linear (bond-length)-(bond-order) curve for S-S bonds in cis-planar disulfide groups with an assigned single-bond length of $2,10 \AA$ and a double-bond length of 1.89 \AA (found in S_{2}). Based on this curve the $\mathrm{S}-\mathrm{S}$ bond in $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~S}_{2}$ of length $2.007 \AA$ would possess partial double-bond character amounting to a π-bond order of 0.4 (and a total valence bond order of 1.4).
ward-bonding-back-bonding $\mathrm{Co}-\mathrm{As}_{2}-\mathrm{Co}$ interaction which concomitantly results in a decrease of the As-As valence-bond order from three (as a neutral species) to approximately two. Similar considerations of the corresponding synergic bonding mechanism in $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~S}_{2}$ suggest a resultant $\mathrm{S}-\mathrm{S}$ total valence-bond order decrease from two (as neutral free S_{2}) to a value near one in this $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ complex. ${ }^{26}$ Further synthetic and structural work is in progress to appraise and amplify these bonding conclusions.

Acknowledgment. We are pleased to acknowledge the National Science Foundation (GP-4919) for their financial support of this work. The use of the CDC 3600 and 1604 computers at the University of Wisconsin Computing Center was made possible by the partial support of NSF and WARF through the University Research Committee. One of us (M. S. F.) is grateful to NSF (Grant GY-4404) for a summer undergraduate NSF Trainee Fellowship.

Alan S. Foust, Michael S. Foster, Lawrence F. DahI Department of Chemistry, University of Wisconsin Madison, Wisconsin 53706

Received April 3, 1969

Trifluoroacetolysis of Simple Primary Alkyl Toluenesulfonates ${ }^{1}$

Sir:
In earlier work, $\mathrm{EtOH}, \mathrm{AcOH}$, and HCOOH proved to be instructive and useful solvents in probing the competition between anchimerically assisted ionization (k_{Δ}) and anchimerically unassisted ionization (k_{s}) in solvolysis of simple alkyl systems. ${ }^{2,3}$ The solvent sequence of $k_{\Delta} / k_{\mathrm{s}}$ ratios in solvolysis of marginal systems, such as 2-phenyl-1-ethyl, ${ }^{2 \mathrm{~b}, \mathrm{c}}$ is $\mathrm{EtOH}<\mathrm{AcOH}<$ HCOOH . With the simplest primary alkyl toluenesulfonates, ${ }^{32}$ the observed MeOTs-EtOTs- i-BuOTs-neopentyl-OTs (neoPenOTs) sequence of solvolysis rates at 75° changed from a steeply descending one, 4000: 1750:80:1, in EtOH to $10: 9: 2.8: 1$ in AcOH , and finally to the relatively flat sequence, $0.56: 1.0: 1.22: 1.0$, in HCOOH . Formolysis of MeOTs and EtOTs was judged to be far from the Lim. category; in other words, it occurs with substantial nucleophilic solvent participation.

The formolysis rate of neoPenOTs, just as high as that of EtOTs in spite of the very large steric hindrance to backside solvent entry, was most simply explained as due to anchimeric assistance from carbon participation. ${ }^{3 \mathrm{a}}$ In the case of i-BuOTs, the formolysis rate was judged to be consistent with at least some successful competition with k_{s} from k_{Δ} due to hydrogen participation. ${ }^{3 \mathrm{a}}$ Since our earlier remarks regarding neopentyl solvolysis, various other discussions ${ }^{4}$ have appeared

[^3]pro and con with the idea of anchimeric assistance to neopentyl ionization.

Quite recently, $\mathrm{CF}_{3} \mathrm{COOH}$, with its very low nucleophilicity and relatively high ionizing power, has become recognized as an important solvolyzing solvent which gives rise to $k_{\Delta} / k_{\mathrm{s}}$ ratios much higher than in $\mathrm{HCOOH} .{ }^{5}$ We have found this solvent to be very instructive in the case of the simplest primary alkyl systems, and in this communication we report the trifluoroacetolysis of the $\mathrm{Me}, \mathrm{Et}, n-\mathrm{Pr}, i-\mathrm{Bu}$, and neoPen series of p-toluenesulfonates.

The solvolyses in $\mathrm{CF}_{3} \mathrm{COOH}$ were followed using the absorption of the alkyl tosylate at $273 \mathrm{~m} \mu .{ }^{6}$ The firstorder solvolysis rate constants $\left(k_{\mathfrak{t}}\right)$ listed in Table I were measured in the absence of $\mathrm{CF}_{3} \mathrm{COONa}$. In the case of MeOTs, EtOTs, and n-PrOTs, k_{t} increases substantially on addition of $\mathrm{CF}_{3} \mathrm{COONa}$. The increase in k_{t} at 100° can be fit with second-order rate constants equal to $6.1 \times 10^{-5}, 4.9 \times 10^{-5}$, and $4.2 \times 10^{-5} \mathrm{M}^{-1}$ sec^{-1}, for MeOTs, EtOTs, and n-PrOTs, respectively. For i-BuOTs and neoPenOTs, no sensitivity of k_{t} to $\mathrm{CF}_{3} \mathrm{COONa}$ addition was detected.

The products of reaction were followed by nmr. MeOTs and EtOTs produce the corresponding ROCOCF_{3} quantitatively. No deuterium scrambling ($<2 \%$) was observed when $\beta-d_{3}$-EtOTs was solvolyzed. Propyl tosylate produces $11.4 \% n$ - $\mathrm{PrOCOCF}_{3}$ plus $88.6 \% i-\mathrm{PrOCOCF}_{3}$ at 100° and $10.3 \% n-\mathrm{PrOCOCF}_{3}$ plus $89.7 \% i-\mathrm{PrOCOCF}_{3}$ at 125°. The solvolysis of $2,2-d_{2}-1$-PrOTs at 100° yields 83.7% - $\mathrm{PrOCOCF}_{3}$ containing $<0.05 \alpha$ proton ($\delta 4.75$, based on $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $\delta 5.30$) and 5.03β protons ($\delta 1.03$). Thus, the i $\mathrm{PrOCOCF}_{3}$ does not arise from solvent addition to propene ${ }^{7}$ and there is no extensive equilibration of the protons. The remaining 16.3% product is n $\mathrm{PrOCOCF}_{3}$. In the solvolysis of $1,1-d_{2}$-1-PrOTs no α proton signals were evident (<0.05 proton) in the residual n - PrOTs or the $n-\mathrm{PrOCOCF}{ }_{3}$ product. Thus, the solvolysis is not appreciably accompanied by 1,3 -hydride shifts ${ }^{8}$ or formation and reopening of cyclopropane. ${ }^{9}$ The solvolysis of i-BuOTs yields only a rearranged product, this being mainly $t-\mathrm{BuOCOCF}_{3} \mathrm{ac}-$ companied by as much as $20 \% 2-\mathrm{BuOCOCF}_{3}$. Quantitative product analysis is difficult in this case since the product is unstable even in the presence of $\mathrm{CF}_{3} \mathrm{COONa}$. t-AmOCOCF ${ }_{3}$ is produced quantitatively from neoPenOTs.

As seen in Table I the relative rates in $\mathrm{CF}_{3} \mathrm{COOH}$ at 75.0° show a steeply rising trend for the primary tosylates, the MeOTs-EtOTs-n-PrOTs-i-BuOTs-neoPenOTs sequence being $1: 13: 93: 3060: 5970$, in sharp contrast to the sequences previously observed ${ }^{3 \mathrm{a}}$ in $\mathrm{EtOH}, \mathrm{AcOH}$,
Kelly, J. Org. Chem., 32, 4122 (1967); (f) G. M. Fraser and H. M. R. Hoffman, Chem. Commun., 561 (1967).
(5) (a) A. Diaz and S. Winstein, J. Amer. Chem. Soc., 91, 4300 (1969); (b) A. Diaz, I. Lazdins, and S. Winstein, ibid., 90, 6546 (1968); (c) J. E. Nordlander and W. G. Deadman, Tetrahedron Lett., 4409 (1967), J. Amer. Chem. Soc., 90, 1590 (1968); (d) R. J. Jablonski and E. I. Snyder, Tetrahedron Lett., 1103 (1968).
(6) C. G. Swain and C. R, Morgan, J. Org. Chem., 29, 2097 (1964).
(7) The 2-Pr product formed in the HgO-catalyzed formolysis of $n-\mathrm{PrBr}$ in 90% aqueous HCOOT contains no tritium, supporting an intramolecular reaction: J. S. Coe and V. Gold, J. Chem. Soc., 4940 (1960).
(8) The AlBr_{8}-catalyzed isomerization of $n-\mathrm{PrBr}$ to $i-\mathrm{PrBr}$ proceeds by an essentially irreversible 1,2-hydride shift: G. J. Karabatsos, J. L. Fry, and S. Meyerson, Tetrahedron Lett., 3735 (1967).
(9) Addition of $\mathrm{CF}_{3} \mathrm{COOD}$ to cyclopropane gives n-ProCOCFs with one D statistically distributed: N. C. Deno, et al., J. Amer. Chem. Soc., 90, 6457 (1968).

[^0]: (1) Previous paper in this series: A. S. Foust, M. S. Foster, and L. F. Dahl, J. Am. Chem. Soc., 91, 5631 (1969).
 (2) Presented in part at the 157 th National Meeting of the American Chemical Society, Minneapolis, Minn., April 1969.
 (3) Cf. A. D. Allen and F. Bottomley, Accounts Chem. Res., 1, 360 (1968).
 (4) K. D. Carlson, F. J. Kohl, and O. M. Uy in "Mass Spectrometry in Inorganic Chemistry," Advances in Chemistry Series, No. 72, J, L. Margrave, Ed., American Chemical Society, Washington, D. C., 1968, pp 245-260, and references cited therein.

[^1]: (5) J. Chatt, A. B. Nikolsky, R. L. Richards, and J. R. Sanders, Chem. Commun., 145 (1969).
 (6) D. E. Harrison and H. Taube, J. Am. Chem. Soc., 89, 5706 (1967); D. F. Harrison, E. Weissberger, and H. Taube, Science, 159, 320 (1968).
 (7) From a valence-bond standpoint each of the metal atoms in these iron-sulfur and cobalt-arsenic cluster complexes possesses a closed-shell electronic configuration. The expected diamagnetic character of $\mathrm{Co}_{2}\left\{(\mathrm{CO})_{3} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\} \mathrm{As}_{2}$ was established from the Faraday method at room temperature; we are indebted to Mr. Michael Camp of the University of Wisconsin for performing this magnetic measurement for us.
 (8) C. H. Wei and L. F. Dahl, Inorg. Chem., 4, 1 (1965).
 (9) W. Hieber and W. Beck, Z. Anorg. Allgem. Chem., 305, 265 (1960), and references cited therein.
 (10) In hexane solution $\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{As}_{2}$ exhibits three distinct terminal carbonyl absorption bands at 2100 (s), 2065 (ss), and 2040 (ss) cm^{-1}; for $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~S}_{2}$ the corresponding lower three carbonyl frequencies reported by Hieber and Beck ${ }^{9}$ are 2081 (s), 2042 (ss), and 2005 (s) cm^{-1} in CCl_{4} solution and 2081 (s), 2038 (ss), and 1996 (ss) in KBr pellet. These data are indicative of greater metal-carbonyl back-bonding in the ir on complex due to larger $\pi^{*}(\mathrm{CO})$ orbital participation in the electronfilled MO's.

[^2]: (11) H. Greenfield, H. W. Sternberg, R. A. Friedel, J. H. Wotiz, R. Markby, and I. Wender, J. Am. Chem. Soc., 78, 120 (1956).
 (12) W. G. Sly, ibid., 81, 18 (1959).
 (13) D. A. Brown, J. Chem. Phy's., 33, 1037 (1960)
 (14) L. R. Maxwel1, S. B. Hendricks, and V. M. Mosley, ibid., 3, 699 (1935).
 (15) J. H. Burns and J. Waser, J. Am. Chem. Soc., 79, 859 (1957).
 (16) K. Hedberg, E. W. Hughes, and J. Waser, Acta Cryst., 14, 369 (1961).

[^3]: (1) Research sponsored by the National Science Foundation.
 (2) S. Winstein, et al.: (a) Bull Soc. Chim. Fr., 18, 55 (1951); (b) J. Amer. Chem. Soc., 75, 147 (1953); (c) ibid., 78, 4801 (1956); (d) ibid., 79, 3105, 3114 (1957); (e) Helv. Chim. Acta, 41, 807 (1958); (f) J. Amer. Chem. Soc., 87, 3504 (1965).
 (3) (a) S. Winstein and H. Marshall, ibid., 74, 1120 (1952); (b) S. Winstein, et al., ibid., 74, 1113 (1952); (c) S. Winstein and J. Takahashi, Tetrahedron Lett., 2, 316(1958).
 (4) (a) W. A. Sanderson and H. S. Mosher, J. Amer. Chem. Soc., 88, 4185 (1966); (b) W. G. Dauben and J. L. Chitwood, ibid., 90, 6876 (1968); (c) G. J. Karabatsos, et al., ibid., 86, 1994 (1964); (d) J. E. Nordlander, et al., ibid., 88, 4475 (1966); (e) J. E. Nordlander and W. J.

